Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 879
Filtrar
1.
Epigenetics Chromatin ; 17(1): 9, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561749

RESUMO

BACKGROUND: CTCF is highly likely to be the ancestor of proteins that contain large clusters of C2H2 zinc finger domains, and its conservation is observed across most bilaterian organisms. In mammals, CTCF is the primary architectural protein involved in organizing chromosome topology and mediating enhancer-promoter interactions over long distances. In Drosophila, CTCF (dCTCF) cooperates with other architectural proteins to establish long-range interactions and chromatin boundaries. CTCFs of various organisms contain an unstructured N-terminal dimerization domain (DD) and clusters comprising eleven zinc-finger domains of the C2H2 type. The Drosophila (dCTCF) and human (hCTCF) CTCFs share sequence homology in only five C2H2 domains that specifically bind to a conserved 15 bp motif. RESULTS: Previously, we demonstrated that CTCFs from different organisms carry unstructured N-terminal dimerization domains (DDs) that lack sequence homology. Here we used the CTCFattP(mCh) platform to introduce desired changes in the Drosophila CTCF gene and generated a series of transgenic lines expressing dCTCF with different variants of the N-terminal domain. Our findings revealed that the functionality of dCTCF is significantly affected by the deletion of the N-terminal DD. Additionally, we observed a strong impact on the binding of the dCTCF mutant to chromatin upon deletion of the DD. However, chromatin binding was restored in transgenic flies expressing a chimeric CTCF protein with the DD of hCTCF. Although the chimeric protein exhibited lower expression levels than those of the dCTCF variants, it efficiently bound to chromatin similarly to the wild type (wt) protein. CONCLUSIONS: Our findings suggest that one of the evolutionarily conserved functions of the unstructured N-terminal dimerization domain is to recruit dCTCF to its genomic sites in vivo.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Animais Geneticamente Modificados/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Dimerização , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Mamíferos/genética
2.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569007

RESUMO

The ability to independently control gene expression in two different tissues in the same animal is emerging as a major need, especially in the context of inter-organ communication studies. This type of study is made possible by technologies combining the GAL4/UAS and a second binary expression system such as the LexA system or QF system. Here, we describe a resource of reagents that facilitate combined use of the GAL4/UAS and a second binary system in various Drosophila tissues. Focusing on genes with well-characterized GAL4 expression patterns, we generated a set of more than 40 LexA-GAD and QF2 insertions by CRISPR knock-in and verified their tissue specificity in larvae. We also built constructs that encode QF2 and LexA-GAD transcription factors in a single vector. Following successful integration of this construct into the fly genome, FLP/FRT recombination is used to isolate fly lines that express only QF2 or LexA-GAD. Finally, using new compatible shRNA vectors, we evaluated both LexA and QF systems for in vivo gene knockdown and are generating a library of such RNAi fly lines as a community resource. Together, these LexA and QF system vectors and fly lines will provide a new set of tools for researchers who need to activate or repress two different genes in an orthogonal manner in the same animal.


In order for researchers to understand how organisms develop and function, they often switch specific genes on or off in certain tissues or at selected times. This can be achieved using genetic tools called binary expression systems. In the fruit fly ­ a popular organism for studying biological processes ­ the most common is the GAL4/UAS system. In this system, a protein called GAL4 is expressed in a specific organ or tissue where it activates a UAS element ­ a genetic sequence that is inserted in front of the gene that is to be switched on. This can also include genes inserted into the fruit fly encoding fluorescent proteins or stretches of DNA coding for factors that can silence specific genes. For example, fruit flies expressing GAL4 protein specifically in nerve cells and a UAS element in front of a gene for a fluorescent protein will display fluorescent nerve cells, which can then be examined using fluorescence microscopy. Studying how organs communicate with one other can require controlled expression of multiple genes at the same time. In fruit flies, other binary expression systems that are analogous to the GAL4/UAS system (known as LexA/LexAop and QF/QUAS) can be used in tandem. For example, to study gut-brain communication, the GAL4/UAS system might be used to switch on the gene for an insulin-like protein in the gut, with one of the other systems controlling the expression of its corresponding receptor in the brain. However, these experiments are currently difficult because, while there are thousands of GAL4/UAS genetic lines, there are only a few LexA/LexAop and QF/QUAS genetic lines. To address this lack of resources, Zirin et al. produced a range of genetically engineered fruit flies containing the LexA/LexAop and QF/QUAS binary expression systems. The flies expressed LexA or QF in each of the major fly organs, including the brain, heart, muscles, and gut. A fluorescent reporter gene linked to the LexAop or QUAS elements, respectively, was then used to test the specificity to single organs and compare the different systems. In some organs the LexA/LexAop system was more reliable than the QF/QUAS system. However, both systems could be successfully combined with genetic elements to switch on a fluorescent reporter gene or switch off a gene of interest in the intended organ. The resources developed by Zirin et al. expand the toolkit for studying fruit fly biology. In future, it will be important to understand the differences between GAL4, LexA and QF systems, and to increase the number of fruit fly lines containing the newer binary expression systems.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expressão Gênica , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Animais Geneticamente Modificados/metabolismo
3.
Life Sci ; 345: 122606, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574884

RESUMO

AIMS: Alzheimer's disease (AD), the most common neurodegenerative disorder associated with aging, is characterized by amyloid-ß (Aß) plaques in the hippocampus. Ergosterol, a mushroom sterol, exhibits neuroprotective activities; however, the underlying mechanisms of ergosterol in promoting neurite outgrowth and preventing Aß-associated aging have never been investigated. We aim to determine the beneficial activities of ergosterol in neuronal cells and Caenorhabditis elegans (C. elegans). MATERIALS AND METHODS: The neuritogenesis and molecular mechanisms of ergosterol were investigated in wild-type and Aß precursor protein (APP)-overexpressing Neuro2a cells. The anti-amyloidosis properties of ergosterol were determined by evaluating in vitro Aß production and the potential inhibition of Aß-producing enzymes. Additionally, AD-associated transgenic C. elegans was utilized to investigate the in vivo attenuating effects of ergosterol. KEY FINDINGS: Ergosterol promoted neurite outgrowth in Neuro2a cells through the upregulation of the transmembrane protein Teneurin-4 (Ten-4) mRNA and protein expressions, phosphorylation of the extracellular signal-regulated kinases (ERKs), activity of cAMP response element (CRE), and growth-associated protein-43 (GAP-43). Furthermore, ergosterol enhanced neurite outgrowth in transgenic Neuro2A cells overexpressing either the wild-type APP (Neuro2a-APPwt) or the Swedish mutant APP (Neuro2a-APPswe) through the Ten-4/ERK/CREB/GAP-43 signaling pathway. Interestingly, ergosterol inhibited Aß synthesis in Neuro2a-APPwt cells. In silico analysis indicated that ergosterol can interact with the catalytic sites of ß- and γ-secretases. In Aß-overexpressing C. elegans, ergosterol decreased Aß accumulation, increased chemotaxis behavior, and prolonged lifespan. SIGNIFICANCE: Ergosterol is a potential candidate compound that might benefit AD patients by promoting neurite outgrowth, inhibiting Aß synthesis, and enhancing longevity.


Assuntos
Doença de Alzheimer , Neuroblastoma , Animais , Humanos , Caenorhabditis elegans/metabolismo , Longevidade , Proteína GAP-43 , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais Geneticamente Modificados/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Crescimento Neuronal
4.
Mol Vis ; 30: 123-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601019

RESUMO

Purpose: Danio rerio zebrafish constitute a popular model for studying lens development and congenital cataracts. However, the specific deletion of a gene with a Cre/LoxP system in the zebrafish lens is unavailable because of the lack of a lens-Cre-transgenic zebrafish. This study aimed to generate a transgenic zebrafish line in which Cre recombinase was specifically expressed in the lens. Methods: The pTol2 cryaa:Cre-polyA-cryaa:EGFP (enhanced green fluorescent protein) plasmid was constructed and co-injected with Tol2-transposase into one-to-two-cell-stage wild-type (WT) zebrafish embryos. Whole-mount in situ hybridization (ISH), tissue section, hematoxylin and eosin staining, a Western blot, a split-lamp observation, and a grid transmission assay were used to analyze the Cre expression, lens structure, and lens transparency of the transgenic zebrafish. Results: In this study, we generated a transgenic zebrafish line, zTg(cryaa:Cre-cryaa:EGFP), in which Cre recombinase and EGFP were driven by the lens-specific cryaa promoter. zTg(cryaa:Cre-cryaa:EGFP) began to express Cre and EGFP specifically in the lens at the 22 hpf stage, and this ectopic Cre could efficiently and specifically delete the red fluorescent protein (RFP) signal from the lens when zTg(cryaa:Cre-cryaa:EGFP) embryos were injected with the loxP-flanked RFP plasmid. The overexpression of Cre and EGFP did not impair zebrafish development or lens transparency. Accordingly, this zTg(cryaa:Cre-cryaa:EGFP) zebrafish line is a useful tool for gene editing, specifically with zebrafish lenses. Conclusions: We established a zTg(cryaa:Cre-cryaa:EGFP) zebrafish line that can specifically express an active Cre recombinase in lens tissues. This transgenic zebrafish line can be used as a tool to specifically manipulate a gene in zebrafish lenses.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Integrases/genética , Plasmídeos , Regiões Promotoras Genéticas
5.
Front Endocrinol (Lausanne) ; 15: 1369043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628583

RESUMO

The manipulation of the somatotropic axis, governing growth, has been a focus of numerous transgenic approaches aimed at developing fast-growing fish for research, medicine and aquaculture purposes. However, the excessively high growth hormone (GH) levels in these transgenic fish often result in deformities that impact both fish health and consumer acceptance. In an effort to mitigate these issues and synchronize exogenous GH expression with reproductive processes, we employed a novel transgenic construct driven by a tilapia luteinizing hormone (LH) promoter. This approach was anticipated to induce more localized and lower exogenous GH secretion. In this study, we characterized the growth and reproduction of these transgenic LHp-GH zebrafish using hormonal and physiological parameters. Our findings reveal that LHp-GH fish exhibited accelerated growth in both length and weight, along with a lower feed conversion ratio, indicating more efficient feed utilization, all while maintaining unchanged body proportions. These fish demonstrated higher expression levels of LH and GH in the pituitary and elevated IGF-1 levels in the liver compared to wild-type fish. An examination of reproductive function in LHp-GH fish unveiled lower pituitary LH and FSH contents, smaller follicle diameter in female gonads, and reduced relative fecundity. However, in transgenic males, neither the distribution of spermatogenesis stages nor sperm concentrations differed significantly between the fish lines. These results suggest that coupling exogenous GH expression with endogenous LH expression in females directs resource investment toward somatic growth at the expense of reproductive processes. Consequently, we conclude that incorporating GH under the LH promoter represents a suitable construct for the genetic engineering of commercial fish species, providing accelerated growth while preserving body proportions.


Assuntos
Hormônio do Crescimento , Hormônio do Crescimento Humano , Animais , Feminino , Masculino , Hormônio do Crescimento/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sêmen/metabolismo , Hormônio do Crescimento Humano/genética , Animais Geneticamente Modificados/metabolismo , Hormônio Luteinizante/genética , Técnicas de Transferência de Genes
6.
Sci Rep ; 14(1): 6085, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480808

RESUMO

Axonal terminals of the small ventral lateral neurons (sLNvs), the circadian clock neurons of Drosophila, show daily changes in their arborization complexity, with many branches in the morning and their shrinkage during the night. This complex phenomenon is precisely regulated by several mechanisms. In the present study we describe that one of them is autophagy, a self-degradative process, also involved in changes of cell membrane size and shape. Our results showed that autophagosome formation and processing in PDF-expressing neurons (both sLNv and lLNv) are rhythmic and they have different patterns in the cell bodies and terminals. These rhythmic changes in the autophagy activity seem to be important for neuronal plasticity. We found that autophagosome cargos are different during the day and night, and more proteins involved in membrane remodeling are present in autophagosomes in the morning. In addition, we described for the first time that Atg8-positive vesicles are also present outside the sLNv terminals, which suggests that secretory autophagy might be involved in regulating the clock signaling network. Our data indicate that rhythmic autophagy in clock neurons affect the pacemaker function, through remodeling of terminal membrane and secretion of specific proteins from sLNvs.


Assuntos
Relógios Circadianos , Proteínas de Drosophila , Animais , Drosophila melanogaster/metabolismo , Animais Geneticamente Modificados/metabolismo , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/fisiologia , Drosophila/metabolismo , Neurônios/metabolismo , Autofagia
7.
RNA Biol ; 21(1): 1-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38531838

RESUMO

Transgene silencing is a common phenomenon observed in Caenorhabditis elegans, particularly in the germline, but the precise mechanisms underlying this process remain elusive. Through an analysis of the transcription factors profile of C. elegans, we discovered that the expression of several transgenic reporter lines exhibited tissue-specific silencing, specifically in the intestine of C. elegans. Notably, this silencing could be reversed in mutants defective in endogenous RNA interference (RNAi). Further investigation using knock-in strains revealed that these intestine-silent genes were indeed expressed in vivo, indicating that the organism itself regulates the intestine-specific silencing. This tissue-specific silencing appears to be mediated through the endo-RNAi pathway, with the main factors of this pathway, mut-2 and mut-16, are significantly enriched in the intestine. Additionally, histone modification factors, such as met-2, are involved in this silencing mechanism. Given the crucial role of the intestine in reproduction alongside the germline, the transgene silencing observed in the intestine reflects the self-protective mechanisms employed by the organisms. In summary, our study proposed that compared to other tissues, the transgenic silencing of intestine is specifically regulated by the endo-RNAi pathway.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Interferência de RNA , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , RNA de Cadeia Dupla/metabolismo , Transgenes , Animais Geneticamente Modificados/metabolismo , RNA Interferente Pequeno/genética
8.
Biomed Pharmacother ; 173: 116455, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503234

RESUMO

The sigma-1 receptor (σ-1R), a chaperone protein located at the mitochondria-associated membrane (MAM) of the endoplasmic reticulum, can interact with and modify the signaling pathways of various proteins, thereby modulating many disease pathologies, including Alzheimer's disease (AD). The σ-1R ligand dipentylammonium (DPA) was analyzed for its anti-AD properties using PC12 cells (in vitro) and Caenorhabditis elegans (in vivo) models along with molecular docking (in silico) analysis. DPA at 1 and 10 µM concentrations was able to significantly potentiate NGF-induced neurite growth length by 137.7 ± 12.0 and 187.8 ± 16.4, respectively, when compared to the control 76.9 ± 7.4. DPA also regulated neurite damage caused by Aß(25-35) treatment in differentiated PC12 cells by improving cell viability and neurite length. In C. elegans, DPA could significantly extend the median and maximum lifespan of Aß transgenic strain CL2006 without impacting wild-type nematodes. Additionally, it could significantly reduce the paralysis phenotype of another Aß transgenic strain, CL4176, thereby improving the overall health in AD pathogenesis. This effect depended on σ-1R, as DPA could not modulate the lifespan of σ-1R mutant TM3443. This was further confirmed using agonist PRE084 and antagonist BD1047, wherein the agonist alone could extend the lifespan of CL2006, while the antagonist suppressed the effect of DPA in CL2006. Interestingly, neither had an TM3443. Further, molecular docking analysis showed that DPA had a similar binding affinity as that of PRE084, BD1047 and pentazocine against the σ-1R receptor in humans and C. elegans, which collectively suggests the anti-AD properties of DPA.


Assuntos
Doença de Alzheimer , Compostos de Amônio , Etilenodiaminas , Fármacos Neuroprotetores , Receptores sigma , Animais , Ratos , Humanos , Doença de Alzheimer/tratamento farmacológico , 60610 , Caenorhabditis elegans , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ligantes , Simulação de Acoplamento Molecular , Animais Geneticamente Modificados/metabolismo , Técnicas de Cultura de Células , Peptídeos beta-Amiloides/metabolismo , Receptores sigma/metabolismo
9.
Biotechnol J ; 19(3): e2300307, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472101

RESUMO

BACKGROUND: The worldwide growing demand for human insulin for treating diabetes could be supplied by transgenic animals producing insulin in their milk. METHODS AND RESULTS: Pseudo-lentivirus containing the bovine ß-casein promoter and human insulin sequences was used to produce modified adult fibroblasts, and the cells were used for nuclear transfer. Transgenic embryos were transferred to recipient cows, and one pregnancy was produced. Recombinant protein in milk was evaluated using western blotting and mass spectrometry. One transgenic cow was generated, and in milk analysis, two bands were observed in western blotting with a molecular mass corresponding to the proinsulin and insulin. The mass spectrometry analysis showed the presence of human insulin more than proinsulin in the milk, and it identified proteases in the transgenic milk that could convert proinsulin into insulin and insulin-degrading enzyme that could degrade the recombinant protein. CONCLUSION: The methodologies used for generating the transgenic cow allowed the detection of the production of recombinant protein in the milk at low relative expression compared to milk proteins, using mass spectrometry, which was efficient for detecting recombinant protein with low expression in milk. Milk proteases could act on protein processing converting recombinant protein to functional protein. On the other hand, some milk proteases could act in degrading the recombinant protein.


Assuntos
Leite , Proinsulina , Feminino , Gravidez , Animais , Bovinos , Humanos , Animais Geneticamente Modificados/metabolismo , Proinsulina/análise , Proinsulina/metabolismo , Leite/química , Proteínas Recombinantes/metabolismo , Insulina/análise , Peptídeo Hidrolases/metabolismo
10.
Mol Neurodegener ; 19(1): 22, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454456

RESUMO

BACKGROUND: Mutations in the ß-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS: We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of ß-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a ß-glucocerebrosidase irreversible inhibitor was used to dissect the impact of ß-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of ß-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which ß-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for ß-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of ß-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS: Here we show that ß-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific ß-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS: Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.


Assuntos
Doença de Gaucher , Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/metabolismo , Animais Geneticamente Modificados/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Lipídeos , Mutação , Doença de Parkinson/metabolismo
11.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119687, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342312

RESUMO

Leishmania donovani is an auxotroph for heme. Parasite acquires heme by clathrin-mediated endocytosis of hemoglobin by specific receptor. However, the regulation of receptor recycling pathway is not known in Leishmania. Here, we have cloned, expressed and characterized the Rab4 homologue from L. donovani. We have found that LdRab4 localizes in both early endosomes and Golgi in L. donovani. To understand the role of LdRab4 in L. donovani, we have generated transgenic parasites overexpressing GFP-LdRab4:WT, GFP-LdRab4:Q67L, and GFP-LdRab4:S22N. Our results have shown that overexpression of GFP-LdRab4:Q67L or GFP-LdRab4:S22N does not alter the cell surface localization of hemoglobin receptor in L. donovani. Surprisingly, we have found that overexpression of GFP-LdRab4:S22N significantly blocks the transport of Ldgp63 to the cell surface whereas the trafficking of Ldgp63 is induced to the cell surface in GFP-LdRab4:WT and GFP-LdRab4:Q67L overexpressing parasites. Consequently, we have found significant inhibition of gp63 secretion by GFP-LdRab4:S22N overexpressing parasites whereas secretion of Ldgp63 is enhanced in GFP-LdRab4:WT and GFP-LdRab4:Q67L overexpressing parasites in comparison to untransfected control parasites. Moreover, we have found that survival of transgenic parasites overexpressing GFP-LdRab4:S22N is severely compromised in macrophages in comparison to GFP-LdRab4:WT and GFP-LdRab4:Q67L expressing parasites. These results demonstrated that LdRab4 unconventionally regulates the secretory pathway in L. donovani.


Assuntos
Leishmania donovani , Via Secretória , Animais , Leishmania donovani/genética , Animais Geneticamente Modificados/metabolismo , Proteínas de Transporte/metabolismo , Hemoglobinas/metabolismo , Heme/metabolismo
12.
Cell Rep ; 43(3): 113865, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412096

RESUMO

Microbial metabolites that can modulate neurodegeneration are promising therapeutic targets. Here, we found that the short-chain fatty acid propionate protects against α-synuclein-induced neuronal death and locomotion defects in a Caenorhabditis elegans model of Parkinson's disease (PD) through bidirectional regulation between the intestine and neurons. Both depletion of dietary vitamin B12, which induces propionate breakdown, and propionate supplementation suppress neurodegeneration and reverse PD-associated transcriptomic aberrations. Neuronal α-synuclein aggregation induces intestinal mitochondrial unfolded protein response (mitoUPR), which leads to reduced propionate levels that trigger transcriptional reprogramming in the intestine and cause defects in energy production. Weakened intestinal metabolism exacerbates neurodegeneration through interorgan signaling. Genetically enhancing propionate production or overexpressing metabolic regulators downstream of propionate in the intestine rescues neurodegeneration, which then relieves mitoUPR. Importantly, propionate supplementation suppresses neurodegeneration without reducing α-synuclein aggregation, demonstrating metabolic rescue of neuronal proteotoxicity downstream of protein aggregates. Our study highlights the involvement of small metabolites in the gut-brain interaction in neurodegenerative diseases.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Caenorhabditis elegans/metabolismo , Animais Geneticamente Modificados/metabolismo , Propionatos/farmacologia , Propionatos/metabolismo , Doença de Parkinson/metabolismo , Neurônios/metabolismo , Suplementos Nutricionais , Intestinos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo
13.
Transl Psychiatry ; 14(1): 82, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331943

RESUMO

Genetic variants in ZNF536 contribute to the risk for neuropsychiatric disorders such as schizophrenia, autism, and others. The role of this putative transcriptional repressor in brain development and function is, however, largely unknown. We generated znf536 knockout (KO) zebrafish and studied their behavior, brain anatomy, and brain function. Larval KO zebrafish showed a reduced ability to compete for food, resulting in decreased total body length and size. This phenotype can be rescued by segregating the homozygous KO larvae from their wild-type and heterozygous siblings, enabling studies of adult homozygous KO animals. In adult KO zebrafish, we observed significant reductions in anxiety-like behavior and social interaction. These znf536 KO zebrafish have decreased cerebellar volume, corresponding to decreased populations of specific neuronal cells, especially in the valvular cerebelli (Va). Finally, using a Tg[mbp:mgfp] line, we identified a previously undetected myelin structure located bilaterally within the Va, which also displayed a reduction in volume and disorganization in KO zebrafish. These findings indicate an important role for ZNF536 in brain development and implicate the cerebellum in the pathophysiology of neuropsychiatric disorders.


Assuntos
Cerebelo , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados/metabolismo , Cerebelo/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Encéfalo/metabolismo
14.
Mech Ageing Dev ; 217: 111900, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163472

RESUMO

Sarcopenia, a gradual decrease in skeletal muscle mass and strength, is a major component of frailty in the elderly, with age, (lack of) exercise and diet found to be the major risk factors. The nematode Caenorhabditis elegans is an important model of sarcopenia. Although many studies describe loss of muscle function in ageing C. elegans, surprisingly few report on the loss of muscle mass. Here, in order to quantify loss of muscle mass under various dietary restriction (DR) conditions, we used an internal GFP standard to determine levels of the major body wall muscle myosin (UNC-54) in transgenic unc-54::gfp worms over their lifespan. Myosin density linearly increased during the first week of adulthood and there was no significant effect of DR. In contrast, an exponential decrease in myosin density was seen during the second week of adulthood, with reduced rates of myosin loss for mild and medium DR compared to control. UNC-54 turnover rates, previously determined using pulse-labelling methods, correspond well with the t1/2 value found here for UNC-54-GFP using fluorescence (control t1/2 = 12.0 days), independently validating our approach. These data indicate that sarcopenia is delayed in worms under mild and medium DR due to a reduced rate of myosin UNC-54 degradation, thereby maintaining protein homeostasis.


Assuntos
Proteínas de Caenorhabditis elegans , Sarcopenia , Animais , Humanos , Adulto , Idoso , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Miosinas/metabolismo , Animais Geneticamente Modificados/metabolismo
15.
Int J Biol Macromol ; 254(Pt 1): 127752, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287594

RESUMO

The rice stem borer (RSB, Chilo suppressalis) is a significant agricultural pest that mainly depends on chemical control. However, it has grown to varied degrees of pesticide resistance, which poses a severe threat to rice production and emphasizes the need for safer, more efficient alternative pest management strategies. Here, in vitro and in vivo experiments analyses reveal miR-1579 binds to the critical transcription factor Krüppel homologue 1 (Kr-h1) and negatively regulates its expression. Overexpression of miR-1579 in larvae with significantly lower levels of Kr-h1 was associated with a decline in larval growth and survival. Furthermore, in female pupae, miR-1579 overexpression led to abnormalities in ovarian development, suggesting that targeting miR-1579 could be a potential management strategy against C. suppressalis. Therefore, we generated transgenic rice expressing miR-1579 and screened three lines that had a single copy of highly abundant mature miR-1579 transcripts. Expectedly, fed with transgenic miR-1579 rice lines were significantly lower survival rates in larvae and high levels of resistance to damage caused by C. suppressalis infestation. These findings suggest that miRNA-mediated RNAi could provide an effective and species-specific strategy for C. suppressalis control.


Assuntos
MicroRNAs , Mariposas , Oryza , Feminino , Animais , Oryza/genética , Oryza/metabolismo , Mariposas/genética , Larva , Animais Geneticamente Modificados/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Reprodução , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
16.
Biotechnol Appl Biochem ; 71(1): 132-146, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849075

RESUMO

Amyloid ß (Aß) plaque accumulation-mediated neuronal toxicity has been suggested to cause synaptic damage and consequent degeneration of brain cells in Alzheimer's disease (AD). With the increasing prerequisite of eco-friendly nanoparticles (NPs), research investigators are utilizing green approaches for the synthesis of zinc oxide (ZnO) NPs for pharmaceutical applications. In this present study, ZnO NPs were synthesized from Acanthus ilicifolius to assess the neuroprotective properties in the AD model of transgenic Caenorhabditis elegans strains CL2006 and CL4176 expressing Aß aggregation. Our findings revealed that the therapeutic effect of green-synthesized ZnO NPs is associated with antioxidant activity. We also found that ZnO NPs significantly enhance the C. elegan's lifespan, locomotion, pharyngeal pumping, chemotaxis behavior also diminish the ROS deposition and intracellular productionMoreover, thioflavin T staining demonstrated that ZnO NPs substantially attenuated the Aß deposition in the C. elegans strain as compared to untreated worms. With their antioxidant properties, the greenly synthesized ZnO NPs had a significant neuroprotective efficiency on Aß-induced toxicity by reducing Aß aggregation and specifically reducing the progression of paralysis in the C. elegans AD model. Our findings suggested that the biosynthesized ZnO NPs could be thought-provoking candidates for age-associated neurodegenerative disorders accompanied by oxidative stress.


Assuntos
Doença de Alzheimer , Nanopartículas , Fármacos Neuroprotetores , Óxido de Zinco , Animais , Peptídeos beta-Amiloides/toxicidade , Caenorhabditis elegans/metabolismo , Óxido de Zinco/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais Geneticamente Modificados/metabolismo , Estresse Oxidativo , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia
17.
Int J Biol Macromol ; 254(Pt 2): 127637, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898240

RESUMO

STAT, a transcription factor in the JAK/STAT signaling pathway, regulates immune response to pathogens. In the silkworm (Bombyx mori), STAT exists as two split-forms, STAT-S and STAT-L. However, the role of STAT in silkworm immunity remains unclear. Our purpose was to investigate the effect of STAT on the expression of antimicrobial peptide (AMP) genes and resistance against pathogens. The expression levels of STAT-S and STAT-L were significantly up-regulated after induction by pathogenic microorganisms. In BmE cells, lipopolysaccharide (LPS), peptidoglycan (PGN) and ß-glucan stimulated STAT-S and STAT-L to transfer from the cytoplasm to the nucleus. We found that overexpression of STAT-S and STAT-L in cells could promote the expression of AMPs. We generated transgenic silkworm lines overexpressing STAT-L or STAT-S (OE-STAT-S; OE-STAT-L) or interfering with STAT (A4-dsSTAT). Overexpression of STAT-S and STAT-L upregulated the expression of AMP genes in the OE-STAT-S and OE-STAT-L, increased the survival rates of the OE-STAT-S silkworms and lowered the mortality of OE-STAT-L silkworms infected with S. aureus or Beauveria bassiana. By contrast, the death rate of A4-dsSTAT silkworms was higher after infection with these pathogenic microorganisms. These findings may provide insights into the role of STAT in the antimicrobial immune response of silkworms.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Fatores de Transcrição/genética , Staphylococcus aureus/metabolismo , Regulação da Expressão Gênica , Animais Geneticamente Modificados/metabolismo , Proteínas de Insetos/metabolismo
18.
Food Chem Toxicol ; 184: 114425, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160779

RESUMO

Bis(2-ethylhexyl) phthalate, generally known as DEHP is a synthetic compound mainly used as a plasticizer to make polyvinyl chloride products flexible and soft. The present work aimed to study the toxicity of Bis(2-ethylhexyl) phthalate on the third instar larvae of transgenic Drosophila melanogaster(hsp70-lacZ) Bg9. The hsp70 gene is associated with the ß-galactosidase in our present transgenic strain therefore, the more activity of ß-galactosidase will indirectly correspond to hsp70 expression. The third instar larvae were allowed to feed on the diet for 24 h having 0.001, 0.005, 0.01, and 0.02 M of Bis(2-ethylhexyl) phthalate at the final concentration. After the exposure of 24hrs, the larvae were subjected to ONPG assay, X-gal staining, trypan blue exclusion test, oxidative stress markers assays, and comet assay. A dose-dependent increase in hsp70 expression, tissue damage, Glutathione-S-transferase (GST) activity, lipid peroxidation, monoamine oxidase, caspase-9 & 3, protein carbonyl content (PCC), DNA damage and decrease in the glutathione (GSH) content, delta-aminolevulinic acid dehydrogenase (ẟ-ALD-D) and acetylcholinesterase activity were observed in the larvae exposed to 0.005, 0.01, 0.02 M of Bis-(2-ethylhexyl) phthalate. The dose of 0.001 M of Bis(2-ethylhexyl) phthalate did not showed any toxic effects and hence can be considered as No Observed Adverse Effect Level (NOAEL) for Bis(2-ethylhexyl) phthalate. The study supports the use of Drosophila for the evaluation of possible toxic effects associated with synthetic compounds.


Assuntos
Dietilexilftalato , Drosophila melanogaster , Ácidos Ftálicos , Animais , Carbonilação Proteica , Larva , Óperon Lac , Acetilcolinesterase/metabolismo , Animais Geneticamente Modificados/metabolismo , Drosophila , Glutationa/metabolismo , beta-Galactosidase/metabolismo , Dietilexilftalato/metabolismo
19.
Sci Rep ; 13(1): 22222, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097730

RESUMO

Plasmodium oocysts develop on the abluminal side of the mosquito midgut in relatively small numbers. Oocysts possess an extracellular cell wall-the capsule-to protect them from the insect's haemolymph environment. To further maximise transmission, each oocyst generates hundreds of sporozoites through an asexual multiplication step called sporogony. Completion of transmission requires sporozoite egress from the capsule (excystation), but this process remains poorly understood. In this study, we fused the parasite-encoded capsule protein Cap380 with green fluorescent protein in a transgenic P. berghei line, allowing live fluorescence imaging of capsules throughout sporogony and sporozoite excystation. The results show that capsules progressively weaken during sporulation ultimately resulting in sporozoite exit through small holes. Prior to formation of the holes, local thinning of the capsule was observed. Our findings support an excystation model based on local, rather than global, weakening of the capsule likely facilitated by local re-orientation of sporozoites and apical secretion.


Assuntos
Culicidae , Plasmodium , Animais , Oocistos/metabolismo , Esporozoítos/metabolismo , Plasmodium/metabolismo , Animais Geneticamente Modificados/metabolismo , Culicidae/metabolismo , Proteínas de Protozoários/metabolismo , Plasmodium berghei/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...